Energy Problems
(1) A jogger with a mass of 60.0 kg is moving forward at a speed of $3.0 \mathrm{~m} / \mathrm{s}$. What is the jogger's kinetic energy from this forward motion?
(2) A $1,500 \mathrm{~kg}$ car doubles its speed from $50 \mathrm{~km} / \mathrm{h}$ to $100 \mathrm{~km} / \mathrm{h}$. By how many times does the kinetic energy from the car's forward motion increase?
(3) If a drone accelerated from a rate of $12.6 \mathrm{~m} / \mathrm{s}$ to $16 \mathrm{~m} / \mathrm{s}$ in 1 min , and the amount of force required to achieve such a final velocity was $3 N$, what would be the kinetic energy of the drone after it finished accelerating? What would be the difference between the two KEs between each velocities?
(4) A 4.0 kg ceiling fan is placed 2.5 m above the floor. What is the gravitational potential energy of the ceiling fan system relative to the floor?

